Interpretable and Efficient Multi-Agent Reinforcement Learning

Presented by: **Zichuan Liu**

zichuanliu@smail.nju.edu.cn

Nanjing University

磊

➢ **White-Boxes Modelling Decision-Making**

➢ **Intrinsic Explanation of Credit Assignment**

➢ **Efficient Sample and Action Space Pruning**

Background

 \triangleright

Black-box models with post-hoc explanation techniques might not suffice in MARL:

- ➢ Lack of transparency in credit assignment
- ➢ Misrepresent agents' decisions
- \triangleright Expensive and unstable calculations
- \triangleright Low sample efficiency in learning
- \triangleright The action space is too large

Designer

Controller

How do we explain multiple Tesla autonomous driving accidents?

Background

Why Interpretable and Efficient MARL?

Enhance human understanding of applications

MIXRTs: Toward Interpretable Multi-Agent Reinforcement Learning via Mixing Recurrent Soft Decision Trees

Zichuan Liu, Yuanyang Zhu, Zhi Wang, Yang Gao, Chunlin Chen

Motivation

➢ Approximator for Q-learning via Soft Decision Trees (SDTs)

- ➢ Soft decision boundary with gradient descent
- ➢ Decision structure is simple and expressive
- \triangleright With the inherent feature interpretation
- \triangleright Through a recursive structure to capture the history of agents
- ➢ Make the paradigm of CTDE an interpretable central controller

A two-level Soft Decision Tree

- ➢ Recurrent Tree Cells, RTCs
	- ➢ each non-leaf node traverses to its left child node

 $p_i(o_i^t, h_i^{t-1}) = \sigma(w_o^j o_i^t + w_h^j h_i^{t-1} + b^j)$

 \triangleright The path probability of the top node to leaves

$$
P^{l}(o_{i}^{t}, h_{i}^{t-1}) = \prod_{j \in route(l)} p_{\lfloor j/2 \rfloor \to j}(o_{i}^{t}, h_{i}^{t-1})^{[l \swarrow j]} (1 - p_{\lfloor j/2 \rfloor \to j}(o_{i}^{t}, h_{i}^{t-1}))^{1 - [l \swarrow j]}
$$

➢ Obtain the current state

$$
h_i^t = \sum_{l \in \textit{LeafNodes}} P^l(o_i^t, h_i^{t-1}) \, \theta_h^l
$$

➢ Obtain the action-observation value

 $Q_i(\tau_i,\cdot)=h_i^t w_q$

The process of a two-level Recurrent Tree Cell

- \triangleright Ensemblling multiple RTCs with Low Variance
	- \triangleright Individual trees vary widely

 $Q_i(\tau_i,\cdot)=h_i^t w_q$

➢ RTCs utilize a linear ensemble

$$
Q_i(\tau_i, \cdot) = h_{i,(1)}^t w_{q,(1)} + h_{i,(2)}^t w_{q,(2)} + \ldots + h_{i,(H)}^t w_{q,(H)}
$$

 \triangleright Rewritten the current state

$$
h_i^t = \left[h_{i,(1)}^t, h_{i,(2)}^t, \cdots, h_{i,(H)}^t \right]
$$

The process of a two-level Recurrent Tree Cell

- \triangleright The mixing tree decomposes the joint value into individual values
	- \triangleright Individual action-values

 $Q_i(\tau_i, \cdot) = h_{i,(1)}^t w_{q,(1)} + h_{i,(2)}^t w_{q,(2)} + ... + h_{i,(H)}^t w_{q,(H)}$

- \triangleright The structure of the mixing tree
	- \triangleright Input individual values and the global state $p_j(Q_i, s^t) = \sigma(w_q^j Q_i + w_s^j s^t + b^j)$
	- \triangleright weighted in a linear manner

$$
\phi_i = \sum_{l \in LeafNodes} P^l(Q_i, s^t) \theta_i^l,
$$

$$
W_i = \frac{exp(\sum_{k=1}^H \phi_{i,(k)} w_{\phi,(k)})}{\sum_{i=1}^n exp(\sum_{k=1}^H \phi_{i,(k)} w_{\phi,(k)})},
$$

 \triangleright Obtain the joint action-observation value

$$
Q_{tot}(\boldsymbol{\tau}, \boldsymbol{u}) \approx \sum_{i=1}^n W_i Q_i(\tau_i, u_i)
$$

The structure of the mixing tree

Overall Architecture

Fig. 2. MIXRTs architecture. (a) Diagram of the structure of the mixing tree with depth 2. (b) In the overall MIXRTs architecture, we finally obtain the joint Q_{tot} value via a linear combination of the individual action-value functions. (c) Individual RTCs for each agent.

- ➢ Performance on simple scenarios
	- \triangleright Fast mastery of simple tasks
	- \triangleright Models achieve high win rates

- ➢ Performance on difficult scenarios
	- \triangleright Achieve competitive performance
	- \triangleright More stability during learning

- ➢ Comparison of model parameters
	- ➢ Linear model, fewer parameters

Inherent Interpretation

Fig. 7. Heatmap visualization of earned filters and action distributions for each layer. (a) Heatmap visualization of the learned filters in the learned RTCs of depth 3. The weights of each non-leaf node feature contain the current observations (left) and the historical records (right), respectively. The leaf nodes indicate the magnitude of the different action distributions. (b) Actions probability distribution of the nodes of the RTCs with a given observation, where each node is distinguished by a different color bar.

Stability analysis

Perturbation tests the win rate of MIXRTs. To quantify the interpretation, we use the trained model to calculate the important features in each step via Eq. (13). Then, we mask a varying percentage of the least and most important features with zeros for each step and redo the decision-making.

⁽b) The violin plot of feature importance on 2s3z.

(c) The violin plot of feature importance on MMM2.

Case study

(b) $2s3z$ (step=27)

(c) $2s3z$ (step=34)

(e) MMM2 (step= 12)

(d) MMM2 (step=7)

(f) MMM2 (step= 35)

(c) Comparison of feature importance for MIXRTs on 2s3z.

(d) Agent weight heatmap on 2s3z.

(e) Comparison of feature importance for MIXRTs on MMM2.

(f) Agent weight heatmap on MMM2

NA2Q: Neural Attention Additive Model for Interpretable Multi-Agent Q-Learning

Zichuan Liu, Yuanyang Zhu, Chunlin Chen {zichuanliu, yuanyang}@smail.nju.edu.cn, clchen@nju.edu.cn

 \triangleright The joint action-value function expands it in terms of Q_i by the Taylor expansion:

$$
Q_{tot} = f_0 + \sum_{i=1}^{n} \alpha_i Q_i + \dots + \sum_{i_1, \dots, i_l}^{n} \alpha_{i_1 \dots i_l} \prod_{j=1}^{l} Q_{i_j} + \dots
$$

 \triangleright The joint action-value function expands it in terms of Q_i by the Taylor expansion:

$$
Q_{tot}=f_0+\sum_{i=1}^n\alpha_iQ_i+\cdots+\sum_{i_1,\ldots,i_l}^n\alpha_{i_1\ldots i_l}\prod_{j=1}^lQ_{i_j}+\cdots
$$

 \triangleright We enrich it with an extended GAM method:

$$
Q_{tot} = f_0 + \sum_{i=1}^{n} \alpha_i \underbrace{f_i(Q_i)}_{\text{order-1}} + \dots + \sum_{k \in \mathcal{D}_l} \alpha_k \underbrace{f_k(Q_k)}_{\text{order-}l} + \dots + \underbrace{\alpha_{1...n} \underbrace{f_{1...n}(Q_1, \dots, Q_n)}_{\text{order-}n}}
$$

 \triangleright The joint action-value function expands it in terms of Q_i by the Taylor expansion:

$$
Q_{tot} = f_0 + \sum_{i=1}^n \alpha_i Q_i + \cdots + \sum_{i_1,\ldots,i_l}^n \alpha_{i_1\ldots i_l} \prod_{j=1}^l Q_{i_j} + \cdots
$$

 \triangleright We enrich it with an extended GAM method:

$$
Q_{tot} = f_0 + \sum_{i=1}^{n} \alpha_i \underbrace{f_i(Q_i)}_{\text{order-1}} + \dots + \sum_{k \in \mathcal{D}_l} \alpha_k \underbrace{f_k(Q_k)}_{\text{order-}l} + \dots + \underbrace{\alpha_{1...n} \underbrace{f_{1...n}(Q_1, \dots, Q_n)}_{\text{order-}n}}
$$

 \triangleright We provide an approximation guarantee that there always exists an upper bound on our generalization according to regret analysis under the 1-Lipschitz loss approximation:

Theorem B.2. Let ℓ be 1-Lipschitz, $\delta \in (0,1]$ and Assumption B.1 hold with constants $\{C_1, C_2, \eta\}$. Then, for L_1 -norm models, where $||a_{ld}||_1 \leq B_\alpha$, $1 \leq l \leq n$, and $||\lambda||_1 \leq B_\lambda$ where $\lambda = {\lambda_d}_{d=1}^{\rho_l} \}_{l=1}^n$, there exists some absolute constants $\{C_1, C_2\}$ with probability at least $1 - \delta, \delta \in (0, 1]$ that we have

$$
\mathcal{L}(\widehat{Q}_{tot}) - \mathcal{L}(Q_{tot}^{\star}) \le 2B_{\lambda} \cdot \left(\sum_{l=1}^{n} (B_a)^l\right) \sqrt{\frac{\log(n)}{b}} + \frac{C_1}{C_2} \cdot \left(\sum_{l=1}^{n} \exp(-\rho_l^{\eta})\right) + 2(\sqrt{2} + 1) \cdot \sqrt{\frac{\log(2/\delta)}{b}}.\tag{14}
$$

 \triangleright We maintain both the performance and interpretability:

$$
Q_{tot} = f_0 + \sum_{i=1}^n \alpha_i f_i(Q_i) + \sum_{ij \in \mathcal{D}_2} \alpha_{ij} f_{ij}(Q_i, Q_j)
$$

 \triangleright An example of value decomposition via the GAMs family in MARL. The shape function $f_k \in \{f_1, \dots, f_{1...n}\}$ learns individual or pairwise action values as a team contribution.

Overall Architecture

A novel subfamily of GAMs named **Neural Attention Additive Q-learning** (NA2Q):

- \triangleright NA²Q models all possible higher-order interactions of Q-values.
- \triangleright NA²Q provides local semantics by maximizing the observation resemblance.

Implementation

➢ Construct the identity semantic to provide a captured interpretation mask:

$$
z_i = E_{\omega_1}(\tau_i), \mathcal{M}_i = \varsigma(D_{\omega_2}(z_i)) \qquad \qquad \overbrace{\hspace{15em}}^{\text{Trained by}} \qquad \mathcal{L}_{G_{\omega}} = \mathcal{L}_{vae} + \sum_{i=1}^n \left\| \mathcal{M}_i \right\|_1
$$

 \triangleright The credit is computed with the identity semantics and the global state by an attention mechanism as an intervention function:

$$
\alpha_k = [\alpha_i, \alpha_{ij}] = \frac{\exp((\boldsymbol{w}_z \boldsymbol{z})^\top \text{ReLU}(\boldsymbol{w}_s \boldsymbol{s}))}{\sum_{k=1}^m \exp((\boldsymbol{w}_z \boldsymbol{z})^\top \text{ReLU}(\boldsymbol{w}_s \boldsymbol{s}))}
$$

 \triangleright Transform the local Q-values into a neural GAM paradigm within order-2:

$$
Q_{tot} = f_0(\mathbf{s}) + \sum_{i=1}^n \alpha_i f_i(Q_i) + \sum_{i=1}^n \sum_{j>i}^n \alpha_{ij} f_{ij}(Q_i, Q_j)
$$

Level Based Foraging (LBF)

➢ Our method achieves competitive performance in LBF tasks, and each agent captures task-relevant semantic information.

StarCraft Multi-Agent Challenge (SMAC)

 \triangleright NA²Q consistently gains almost the best performance on all scenarios.

➢ The values of VDN and QMIX are difficult to explain, while the Q-values of the decomposition by NA²Q intend to correspond more clearly to the actions.

(b) Learned shape functions.

Ablation Study

 \triangleright How does the model's performance benefit from the number of interaction orders and the intervention function?

Higher Replay Ratio Empowers Sample-Efficient Multi-Agent Reinforcement Learning

Linjie Xu, Zichuan Liu, Alexander Dockhorn, Diego Perez-Liebana, Jinyu Wang, Lei Song, Jiang Bian

Knowing What Not to Do: Leverage Language Model Insights for Action Space Pruning in Multi-agent Reinforcement Learning

Zhihao Liu, Xianliang Yang, Zichuan Liu, Yifan Xia, Wei Jiang, Yuanyu Zhang, Lijuan Li, Guoliang Fan, Lei Song, Bian Jiang

Higher Replay Ratio

The agent parameter is updated by applying the gradient descent operator:

$$
\theta_{t+1} = \theta_t - \alpha_{\theta} \nabla \mathcal{L}_{\theta},
$$

$$
\phi_{t+1} = \phi_t - \alpha_{\phi} \nabla \mathcal{L}_{\phi},
$$

MARL Training

MARL Training with higher replay ratio

Higher Replay Ratio

Increase the frequency of the gradient updates per environment interaction!

and

Algorithm 1 MARL Training

LLMs for Action Pruning

Exploration functions:

$$
E_1,\ldots,E_K \sim \text{LLM}_c\left(\text{prom},\text{LLM}_g(\text{prom})\right).
$$

Evolutionary search:

 $\phi_1^i, \phi_2^i, \ldots, \phi_K^i \leftarrow \phi_{\text{best}}^{i-1}.$

Reflection and feedback:

$$
\texttt{prom} \leftarrow \texttt{prom} : \texttt{Reflection}(E_{\text{best}}, F_{\text{best}}).
$$

Figure 1: eSpark firstly generates K exploration functions via zero-shot creation. Each exploration function is then used to guide an independent policy, and the evolutionary search is performed to find the best-performing policy. Finally, eSpark reflects on the feedback from the best performance policy, refines, and regenerates the exploration functions for the next *iteration.*

LLMs for Action Pruning

Table 1: Performance in MABIM, a higher profit indicates a better performance. The "Standard" scenario features a single echelon with sufficient capacity. The "2/3 echelons" involves challenges of multi-echelon cooperation. The "Lower/Lowest" scenarios are the challenges where SKUs compete for insufficient capacity, while "500 SKUs scenarios" assess scalability. The '-' indicates CTDE algorithms are not researched in the scalability challenges.

Method	Avg. profits (K)									
	100 SKUs scenarios							500 SKUs scenarios		
	Standard	2 echelons	3 echelons	Lower	Lowest	Standard	2 echelons	3 echelons	Lower	Lowest
IPPO	690.6	1412.5	1502.9	431.1	287.6	3021.2	7052.0	7945.7	3535.9	2347.4
OTRAN	529.6	1595.3	2012.2	70.1	19.5		۰	-	۰	
OPLEX	358.9	1580.7	704.2	379.8	259.3	٠	٠	۰	$\overline{}$	۰
MAPPO	719.8	1513.8	1905.4	478.3	265.8	۰	-	-	-	$\overline{}$
BS static	563.7	1666.6	2338.9	390.7	-1757.5	3818.5	8151.2	11926.3	3115.1	-9063.8
BS dynamic	684.2	1554.2	2378.2	660.6	-97.1	4015.7	8399.3	11611.1	3957.5	2008.6
(S,s)	<u>737.8</u>	1660.8	1725.2	556.9	203.7	4439.4	9952.1	10935.7	3769.3	2212.4
eSpark	823.7	1811.4	2598.7	579.5	405.0	4468.6	9437.3	12134.2	3775.7	2519.5

Table 2: Performance in SUMO, including the mean and standard deviation (in parentheses). A lower time indicates a better performance.

LLMs for Action Pruning

Comparison of exploration functions before and after editing:

Action selection frequency for IPPO and various pruning methods on the 100 SKUs Lowest scenario.

Frequency

Closing Remarks

- \triangleright We use a recursive soft decision tree to model the decision-making process of a single agent, and apply it in MARL
- \triangleright We present NA²Q which combines the inherent interpretability of GAMs into Multi-Agent Reinforcement Learning.
- \triangleright We explore sample efficiency in multi-agent buffer pools using replay radio in the MARL system
- \triangleright We use large language models for action space pruning and reconstruction of agents in MARL

Thanks for your listening!

Any Questions? Please use the chat !